Density Calculation Worksheet

Problem 1: Calculate the density of an object with a mass of 50 grams and a volume of 10 cubic centimeters.

Problem 2: An irregularly shaped object has a mass of 120 grams and displaces 60 milliliters of water when submerged. Calculate its density.

Problem 3: A cube has a volume of 27 cubic centimeters and a density of 3 grams per cubic centimeter. Calculate its mass.

Problem 4: A piece of aluminum has a mass of 250 grams and a density of 2.7 grams per cubic centimeter. What is its volume?

Problem 5: A wooden block has a density of 0.8 grams per cubic centimeter and a volume of 400 cubic centimeters. Calculate its mass.

Problem 6: A sphere has a radius of 5 centimeters and a density of 1.5 grams per cubic centimeter. Calculate its mass.

Problem 7: A sample of lead has a mass of 400 grams and a volume of 32 cubic centimeters. Calculate its density.

Problem 8: A substance has a density of 0.65 grams per milliliter. If a sample has a mass of 130 grams, what is its volume in milliliters?

Problem 9: A piece of iron has a volume of 50 cubic centimeters and a density of 7.87 grams per cubic centimeter. Calculate its mass.

Problem 10: A liquid has a mass of 180 grams and a density of 1.2 grams per milliliter. Calculate its volume in milliliters.

Problem 11: A rectangular prism has dimensions of $4 \mathrm{~cm} \times 5 \mathrm{~cm} \times 8 \mathrm{~cm}$ and a density of 2.5 grams per cubic centimeter. Calculate its mass.

Problem 12: A substance has a mass of 75 grams and a density of 0.9 grams per milliliter. Calculate its volume in milliliters.

Problem 13: A cylindrical container has a radius of 6 centimeters and a height of 10 centimeters. If it is filled with a liquid of density 0.5 grams per milliliter, calculate the mass of the liquid.

Problem 14: A gas occupies a volume of 500 milliliters at a density of 0.04 grams per milliliter. Calculate the mass of the gas.

Problem 15: A block of ice has a mass of 750 grams and a density of 0.9 grams per cubic centimeter. Calculate its volume.

Remember to use the formula for density, which is:
Density (D) = Mass (M) / Volume (V)
You can use this formula to solve all the problems on this worksheet. Good luck with your practice!

Answers:

The answers to the density calculation worksheet problems:
Problem 1: Density $=$ Mass $/$ Volume $=50 \mathrm{~g} / 10 \mathrm{~cm}^{3}=5 \mathrm{~g} / \mathrm{cm}^{3}$
Problem 2: Density $=$ Mass $/$ Volume $=120 \mathrm{~g} / 60 \mathrm{~mL}=2 \mathrm{~g} / \mathrm{mL}$
Problem 3: Mass $=$ Density \times Volume $=3 \mathrm{~g} / \mathrm{cm}^{3} \times 27 \mathrm{~cm}^{3}=81 \mathrm{~g}$
Problem 4: Volume $=$ Mass $/$ Density $=250 \mathrm{~g} / 2.7 \mathrm{~g} / \mathrm{cm}^{3} \approx 92.59 \mathrm{~cm}^{3}$
Problem 5: Mass $=$ Density \times Volume $=0.8 \mathrm{~g} / \mathrm{cm}^{3} \times 400 \mathrm{~cm}^{3}=320 \mathrm{~g}$
Problem 6: Mass $=(4 / 3) \times \pi \times(5 \mathrm{~cm})^{3} \times 1.5 \mathrm{~g} / \mathrm{cm}^{3} \approx 392.7 \mathrm{~g}$
Problem 7: Density $=$ Mass $/$ Volume $=400 \mathrm{~g} / 32 \mathrm{~cm}^{3}=12.5 \mathrm{~g} / \mathrm{cm}^{3}$
Problem 8: Volume = Mass $/$ Density $=130 \mathrm{~g} / 0.65 \mathrm{~g} / \mathrm{mL}=200 \mathrm{~mL}$
Problem 9: Mass $=$ Density \times Volume $=7.87 \mathrm{~g} / \mathrm{cm}^{3} \times 50 \mathrm{~cm}^{3}=393.5 \mathrm{~g}$
Problem 10: Volume = Mass / Density = $180 \mathrm{~g} / 1.2 \mathrm{~g} / \mathrm{mL}=150 \mathrm{~mL}$
Problem 11: Mass $=$ Density \times Volume $=2.5 \mathrm{~g} / \mathrm{cm}^{3} \times(4 \mathrm{~cm} \times 5 \mathrm{~cm} \times 8 \mathrm{~cm})=400 \mathrm{~g}$
Problem 12: Volume $=$ Mass $/$ Density $=75 \mathrm{~g} / 0.9 \mathrm{~g} / \mathrm{mL}=83.33 \mathrm{~mL}$
Problem 13: Volume $=\pi \times(6 \mathrm{~cm})^{2} \times 10 \mathrm{~cm} \times 0.5 \mathrm{~g} / \mathrm{mL} \approx 565.49 \mathrm{~mL}$
Mass $=$ Volume \times Density $\approx 565.49 \mathrm{~mL} \times 0.5 \mathrm{~g} / \mathrm{mL} \approx 282.75 \mathrm{~g}$
Problem 14: Mass $=$ Volume \times Density $=500 \mathrm{~mL} \times 0.04 \mathrm{~g} / \mathrm{mL}=20 \mathrm{~g}$
Problem 15: Volume $=$ Mass $/$ Density $=750 \mathrm{~g} / 0.9 \mathrm{~g} / \mathrm{cm}^{3} \approx 833.33 \mathrm{~cm}^{3}$

I hope these answers help you verify your calculations!

